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ABSTRACT

We run logit models to explain the variability of Pinus radiata structural lumber in 71 second and third un-
pruned logs. The response variable was the proportion of lumber with a static modulus of elasticity greater or 
equal than 8000 MPa, pMSG8+, and the explanatory variables were log volume, branch index, largest branch, 
log internode index, wood basic density, and acoustic velocity. The average pMSG8+ volume was 44,30 % 
and 36,18 % in the second and third log respectively. Ten models were selected based on meeting statistical 
assumptions, their goodness of fit, and the statistical significance of their parameters. The best models (R2 - adj. 
> 0,75) included acoustic velocity (AV) as explanatory variable, which explained 56,25 % of the variability of 
pMSG8+. Models without AV presented goodness of fit ranging from 0,60 to 0,75 (R2 - adj.), and variables with 
the highest weight to explain the variability of pMSG8+ were volume, followed by wood basic density, branch 
index, and largest branch. It is possible to model pMSG8+ from log variables even when acoustic velocity is 
not available; however, this requires wood basic density models calibrated for the Pinus radiata growing zone. 
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INTRODUCTION

The quality of natural inputs, such as logs, is commonly evaluated by their performance generating  
products with high prices. Under a production perspective log attributes have the role of input-traits related 
to lumber production (Alzamora et al. 2013). Multipurpose forest tree species, such as P. radiata, feed fiber, 
structural and appearance wood markets that require different wood trait profiles. The value of solid wood 
is determined by attributes that satisfy two sets of usage requirements: appearance and structural end-uses. 
Appearance wood is influenced by quantity and quality traits such as volume, color, defects, knots, and resin 
spots (Beauregard et al. 2002). Structural wood is mostly determined by dynamic modulus of elasticity, wood 
basic density, volume, and branching (Arriaga et al. 2013, Tsehaye et al. 2000, Tsuchikawa 2007, Xu and 
Walker 2004). Several of these traits are under genetic control, and they could be modified by silviculture and 
processing technology (Schimleck et al. 2019). 

Obtaining wood traits information from logs is not simple; logs are naturally heterogeneous, creating  
problems for product differentiation and for definition of quality grades and standards. Fortunately, there have 
been significant advances on non-destructive approaches to measure and predict wood properties such as 
dynamic modulus of elasticity from trees and logs (Dickson et al. 2003, Lasserre et al. 2005, Matheson et al. 
2002, Soto et al. 2012, Waghorn et al. 2007).

According Ross (2015) and Schimleck et al. (2019), non-destructive tools can measure the physical and 
the mechanical properties of a piece of material without altering its end-use capabilities and using such infor-
mation to make decisions regarding appropriate applications. Consequently, non-destructive acoustic methods 
can increase the efficiency of chain value in wood production (Chauhan and Walker 2006). Apiolaza (2009) 
and Ivković et al. (2009) indicated that tools based on acoustics principles could be used for screening at a 
very early age and be related to several properties like modulus of elasticity, dimensional stability, and fibre 
length’, among others.

Soto et al. (2012) used acoustic tools on standing trees for exploring influence of tree stocking on the 
dynamic modulus of elasticity in a mature P. radiata plantation growing in Biobío Region, Chile, and they 
reported the high variation between logs coming from a single stand. An application of acoustic methods to 
assess structural wood quality in logs, with the corresponding log outturn and grading, was reported by Jones 
and Emms (2010). These authors modeled log-level green and kiln-dried board modulus of elasticity, based on 
acoustic log velocity and green density. 

In Chile, the prediction of structural and appearance P. radiata log outturn has been partially solved by 
using computed x-ray tomography scanners, such as the CT-Log (Schmoldt et al. 1993). This technology 
reconstructs internal log features, allowing the assessment of the optimum cutting solution in real-time. In a 
similar way, integrated efforts between wood researchers and forest companies have developed CALIRO-Saw 
(2014), a sawmill simulator based on real logs that include internal log features and generate products using 
lumber grading rules specified by the users. Unfortunately, all these technologies are available for a reduced 
group of producers due to high costs and operational issues. However, in absence of scanners and sawing  
simulators to support log segregation and processing decisions, we can use variables traditionally recorded in 
the field during primary log sorting to predict the proportion of structural lumber. 

The objective of this study was to develop models that explain the variability of structural lumber with 
static modulus of elasticity greater or equal to 8000 MPa using log variables: volume (VOL), acoustic velocity 
(AV), wood basic density (BD), branch index (BI), largest branch (LB), corewood (CW) and internode index 
(INT). The models that use AV were compared with those that use BD and other variables regularly measured 
at the field.

MATERIALS AND METHODS

Log and lumber attributes

Log and lumber data were provided by the New Zealand Wood Quality Initiative, as a sample of 71 Pinus 
radiata (D. Don) unpruned 5 m long logs  (35 second and 36 third logs) coming from managed and mature 
trees with ages between 26 and 28 years old.  Table 1 presents a summary of log attributes. Log volume 
(VOL) was estimated by using the Smalian formula (Bruce 1982), which considers the small and large log  
end-diameters and the log length (5 m). Branch index (BI) is the mean diameter of the four largest branches 
of the log, one per quadrant (North, East, West, and South). Largest branch (LB) is the diameter of the largest 
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branch of the log. Branches have a negative influence on structural lumber production, where high branch  
angle and size reduce the quality of structural products (Grant et al. 1984, Xu and Walker 2004).

Internode index (INT) is the sum of the lengths of internodes greater or equal than 0,6 m divided by the 
log length (Grace and Carson 1993). 0,6 m is the critical value for short clear wood products in the local in-
dustry, particularly for the finger-joint processing (Fernández et al. 2017). Corewood (CW), is the inner part 
of the stem (considering the first 10 growth rings, juvenile wood), which presents low wood quality for most 
end-uses, including low wood basic density, short cells, high microfibril angle, high spiral grain, and high 
longitudinal shrinkage (Xu and Walker 2004). CW was measured as the percentage of the cross-section at the 
large end diameter of the log.

Basic density (BD) is the amount of dry matter (at 12 % moisture level) per unit of green volume, a trait 
highly related to strength, stiffness and hardness in outerwood. 

Modulus of elasticity  measures a wood’s stiffness, and dynamic modulus of elasticity, or Young’s modulus 
of elasticity (MOEd) which according Beall (2001) it is estimated by a dynamic phenomenon that consists in 
passing of stress waves within wooden materials that can be released in wood and analyzed and affiliated with 
mechanical properties.

Table 1: Mean values and standard deviations (SD) of second and third log attributes.

The acoustic measurements (AV) in logs to estimate MOEd were collected with the Director HM200 tool 
(Fibre-gen, New Zealand). Logs attributes assessed in the study have been reported as influencing traits to 
produce structural lumber from P. radiata (Ivković et al. 2006, Jones and Emms 2010, Waghorn et al. 2007), 
and to characterize the most efficient log attributes profile to produce structural lumber grades (Alzamora et 
al. 2013).

The statistical analysis were performed and generated using R version 3.4.4 (R Core Team, 2019).

Sawmill product evaluation

Once the logs were assessed in the field, they were processed at the mill, and assessed for static modulus 
of elasticity (MOEs) by using a testing machine. Processing aimed to maximize the recovery of lumber with a 
static modulus of elasticity greater or equal than 8000 MPa. The volume of lumber grade recovery for each log 
type is in Table 2, where MSG stands for machine stress graded, and the number is the MOEs in MPa.

Table 2: Descriptive statistics of lumber grades volume (m3) per log.
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Model components

An analysis of correlations was addressed to notice relationships between log attributes. The correlation 
matrix results are shown in Table 3. It was noticed higher correlation between BD and  AV and pMSG8+, and 
between BI with LB, AV, VOL and pMSG8+ . The results about variables and correlations were used to define 
variables being used in the modeling regressions.

Table 3: Correlations matrix between log attributes.

 

Modeling regression functions requires information on the response and predictor variables, as well as 
assumptions about distributions. In this study, the response variable is the lumber proportion with a static 
modulus of elasticity greater or equal than 8000 MPa, which will be named as pMSG8+ (%). The predictors 
are LOG (a categorical variable to indicate second or third log), VOL, BI, LB, BD, AV, INT and CW. Equation 
1 presents the functional form of the model.

0 1 1 2 28   n npMSG X X Xβ β β β ε+ = + + +…+ +       (1)

pMSG8+ corresponds to the proportion of structural lumber derived from the ith log and xi is the vector of 
j attributes in the ith log, and  ɛ is model error.  Equation 2 illustrates the calculation of pMSG8+:

8 10 12
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8
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+ +
+ =

+ + + +
      (2)

In summary, Equation 2 represents the proportion of commercial volume with MOEs greater or equal to 
8000 MPa. 

We run models to obtain the best goodness of fit, and meeting the normality, independence, and ho-
mogeneous variance of residuals assumptions, as well as accounting for multicollinearity of the pre-
dictors. Normality of the residuals was tested using the Shapiro-Wilk test and homoscedasticity with 
de Breusch-Pagan test. We used a logit transformation of the response to avoid predictions of the pro-
portion outside of the range of 0 to 1. Equation 3 illustrates the calculation of pMSG8+ in a logit model: 
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The new response variable is
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,as Gujarati and Porter (2010) suggest 

for transforming a response variable defined as a proportion. Thus, the multiple linear regressions were fitted 
using the    z   variable; however, for recovering the original response variable (pMSG8+), we used the trans-

formation variable                              .  
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RESULTS AND DISCUSSION

The average proportion of lumber with a static modulus of elasticity higher than or equal 8000 MPa was 
37,04 % in the second log, and 31,55 % in the third log. These results could be explained by the slightly su-
perior MOEd in third logs (Table 1). This result does not follow the trend reported by Xu and Walker (2004), 
who indicate that the highest MOEd would be concentrated in the second log, between 4 m to 8 m, and then 
decrease. The correlations between log attributes, and structural lumber production resulted according to com-
parable studies (Ivković et al. 2006). Thus, there was a negative and significant correlation between AV and 
VOL (-0,63, p < 0,05). The correlation between AV and BD was also significant (0,66, p < 0,05). The average 
predictor variables are similar to other reported studies (Apiolaza 2009). For instance, the maximum values of 
AV and LB for second and third logs were 3,59 km/s and 3,45 km/s, and 110 mm and 125 mm, respectively 
which are similar to those obtained by comparable studies (Xu and Walker 2004). 

Concerning structural lumber products (≥ MSG8), at least one structural board was generated in 86 % of 
the second logs, and 83 % of the third logs.

Table 4a: Multiple regression models to estimate structural lumber production (pMSG8+).

 
* Significant at 0,1 level; ** significant at 0,05 level; *** significant at 0,01 level.
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Table 4b: Multiple regression models to estimate structural lumber production (pMSG8+).

 
 

 
* Significant at 0,1 level; ** significant at 0,05 level; *** significant at 0,01 level.

The high significance of the correlations between structural lumber volume (≥MSG8) and log variables  
supported building models to explain pMSG8+. Table 4a Table 4b presents the resulting models explaining the 
variability of the proportion of structural lumber volume in terms of log variables.

Collinearity between explanatory variables of the models was tested by variance inflation factors (VIF), 
which identifies the correlation between independent variables and the strength of that correlation (Gujarati 
and Porter 2010). A VIF value of 1 indicated that there is no correlation between this independent variable 
and any others. Results indicated VIF values of all models and variables were less than 3, which indicated 
weak multicollinearity, and it was not necessary to do corrective measures (Gelman and Hill 2007). Thus, both  
coefficients and p-values of models presented in Table 4a Table 4b are statistically consistent to explain the 
variability of pMSG8+ coming from P. radiata unpruned logs.

For the studied set of logs, AV explained 56,25 % of the variability of structural lumber volume (≥ MSG8), 
(p < 0,01), which supports the importance of this information, as well as the results of comparable studies 
(Waghorn et al. 2007). Wood density (BD) explained 46,24 % of structural lumber volume (> 8000 MPa) 
variation, which confirmed why this variable is considered a central wood property for multiple end uses 
(Kimberley et al. 2015).

Models 1, 2, 3, 4 and 5 in Table 4a Table 4b showed the best performance in terms of goodness of fit 
(R2 - adj > 0,75). Model 1 presented an R2 - adj. of 0,82 and all coefficients were significantly different from 
zero (p < 0,01). AV had a  high weight to explain the variability of pMSG8+, which supports results by Jones 
and Emms (2010). Considering Model 1 for the second log and using the average values of the explanatory 
variables BI, INT, AV, and CW, the estimated value of pMSG8+ was 39 %. When increasing AV by 1 %, this 
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proportion increased more than proportionally by 3 % because the velocity goes as a squared variable in the 
formula to estimate the MOEd.

As we expected, branching represented by branch index (BI), the largest branch (LB), as well as corewood 
(CW), had a negative contribution to the pMSG8+ estimations. Branching has a negative influence on the 
production of structural grades, where high branch angle and diameter reduce the quality of structural products 
(Beauregard et al. 2002, Xu and Walker 2004). Increasing BI by 1 % generated a decrease less than propor-
tional of 0,35 % in pMSG8+ (Model 1, second log), and this decrease ranged from 0,25 % to 0,58 % across all 
models that considered the variable BI. In models that included LB as an explanatory variable, the pMSG8+ 
reduction ranged from 0,34 % to 0,38 % when increasing LB by 1 %. Alzamora et al. (2013) reported a similar 
trend when valuing the effect of branches in the value recovery of logs for structural end uses; an extra milli-
meter in branch diameter decreased the log value by US$ 0,27. In New Zealand, the largest branch (LB) is the 
branching variable used to classify and price logs due to its high correlation with structural grades recovery.  

CONCLUSIONS

As we expected, branching represented by branch index (BI), the largest branch (LB), as well as corewood 
(CW), had a negative contribution to the pMSG8+ estimates. Branching negatively influences the structural 
grades production, where high branch angle and branch diameter reduce the quality of structural products. 
AV, BI, LB, BD, and CW had a significant contribution to explain the recovery of structural lumber grades 
(≥ MSG8), and the magnitude and sign of their coefficients along the ten models were comparable with those 
reported by the literature. 

The proportion of structural lumber (pMSG8+) was strongly related to acoustic measurements and  
negatively associated with branching variables. Acoustic velocity (AV) was the explanatory variable with the 
highest weight, explaining 31,55 % of pMSG8+ variability in the set of second and third logs. The log inter-
node index (INT) also had a positive contribution to explain the variability of pMSG8+ because the higher the 
internode is, the lower is the negative influence of branches and knots on structural wood quality.

The largest branch (LB) and the branch index (BI) made an equivalent contribution across the models. 
This result is propitious for using LB as operative criteria to characterize logs because collecting LB informa-
tion is less time consuming that determining the branch index (BI).

Modeling the variability on pMSG8+ was possible based on a set of variables collected in primary logs 
classification processes such as BI, LB, CW, INT, and other more expensive variables acoustic velocity (AV) 
and wood basic density (BD). Models using AV presented higher goodness of fit than those using BD. However, 
models including BD would be more appealing because they could use mean wood basic density information 
derived from wood density models used by forest companies. This study’s results are also pertinent for Chile 
since structural lumber exported to Europe must be mechanically certified by European standard in grades C16 
and C24, corresponding with a static modulus of elasticity of 7900 MPa and 10200 MPa, respectively.
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