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Optimising Early Selection Using Longitudinal Data
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Abstract

This study analysed the use of longitudinal data, i.e. repeat-
ed assessment of the same individuals at different ages, in the
context of early selection. Autoregressive relationships, banded
correlations and unstructured (‘unsmoothed’) matrices were
used to model the additive genetic covariance matrix (G,) for
10 total height measurements of a Pinus radiata open-pollinat-
ed progeny test. We examined the effects on response to selec-
tion of inferred covariance structure, mass versus combined
selection, one or multiple assessments, and two breeding-delay
intervals. End results are expressed as predicted average gain
per year. The patterns of predicted response to selection vary
widely between inferred covariance structures. Considering the
autoregressive model (based on logarithm of age ratios between
assessments) as an example, the effect of combining informa-
tion from relatives on response to selection is more important
(16% to 41% extra gain) than using extra measurements (2%
to 25 %), when predicting individual breeding values, although
the economics of extra gain vs extra assessment costs must be
carefully analysed. It is expected that using multiple assess-
ments could be advisable for datasets with lower genetic auto-
correlations. An approximate comparison across covariance
models showed the autoregressive model to exhibit the best
ability to produce ‘correct’ selections as well as the highest pre-
dicted response to selection.
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Introduction

Trees included in breeding programs are often evaluated in
progeny trials to predict their genetic value. Results from
testing determine the participation of the trees in the breeding
population, as well as their use as parents of future plantations
(ZoBEL and TALBERT, 1984; WHITE, 1987). The breeding objec-
tive includes tree characteristics at harvest age (e.g. volume
and wood density); however, progeny tests are assessed at one
or more early ages, often less than half the rotation age. The
problem of early selection arises with the existence of less than
perfect genetic and phenotypic correlations between perform-
ance at early assessments and performance at harvest age.

Extending the testing period increases accuracy of selection,
i.e. the correlation between predicted and real breeding values,
but also increases financial costs and time delays to achieve
gain. Optimising response to selection for a given objective
involves finding the appropriate combination of accuracy and
evaluation time. Traditionally, this has been achieved by calcu-
lating gain for different selection ages using the formula for
correlated response to mass or index selection, which includes
the heritability at early and mature ages and genetic correla-
tion between the ages (SEARLE, 1965; FALCONER and MACKAY,
1996). The selection age that maximises either a biological cri-
terion (response per year, e.g. LAMBETH, 1980) or an economic
criterion (net present value, e.g. NEWMAN and WILLIAMS, 1991)
may be chosen.
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Genetic and phenotypic covariance structures used for calcu-
lating correlated response are often estimated from studies
based on a few measurements per tree. Heritabilities are inter-
polated and extrapolated, perhaps using regression or splines
(GwazE et al., 1997), while genetic correlations are often
modelled adapting LAMBETH's empirical phenotypic relation-
ship (LAMBETH, 1980), based on either phenotypic or genetic
correlations (LAMBETH, 1980; BURDON et al., 1992; GWAZE et al.,
1997). WEI and BORRALHO (1996) proposed an alternative model
for heritability based on the concept of repeatability. Positive
definite additive genetic and phenotypic covariance matrices
are not automatically assured by using any of these methods.
Concurrently, MAGNUSSEN (1988, 1993) put forward different
approaches to early selection, based on the size class distribu-
tion of the phenotypes at different ages. However, these latter
procedures do not take into account genetic information.

Genetic evaluation tools in forest genetics have undergone a
progressive refinement, from evaluation based on family-aver-
age (e.g. HATCHER et al., 1981) to the use of Best Linear Predic-
tion (BLP, e.g. WHITE et al., 1987; WHITE and HODGE, 1988) and
Best Linear Unbiased Prediction (BLUP, e.g. BORRALHO, 1995;
JARVIS et al., 1995). In spite of this, determination of optimum
selection time is often based only on response to selection using
the most recent measurement of individual performance, even
when more assessments were available at the time of analysis.
Burnon (1989) suggested the use of longitudinal data, i.e.
repeated assessment of the same individuals at different ages,
to increase accuracy and therefore response to selection. These
assessments can be integrated into a selection index.

This research analyses the implications of using longitudinal
data when selecting at an early age. In the course of that we
consider the effects of assuming different models for additive
genetic variance, the use of repeated assessments combined in
a selection index, and the use of mass and combined selection
on the prediction of genetic gain. End results are expressed in
terms of average predicted response per year.

Materials and Methods
Dataset

Genetic and phenotypic covariance matrices for constructing
the indexes were estimated from a radiata pine (Pinus radiata
D. Don) open-pollinated progeny test with 10 assessments at
ages 1, 2, 4 to 9, 12, and 15 years from planting. The test
included 45 open-pollinated families, planted in 5-tree row-
plots within 8 randomised complete blocks. Trees suppressed
by early competition were omitted from the analysis, leaving a
total of 1526 trees. Observations after mechanical damage to
leaders (especially from age 12 onwards) were omitted. Further
details are described elsewhere (APIOLAZA et al., 2000).

Statistical model

Considering s assessments on individual i and defining
v, = ly; ¥y - ¥,,] as the vector of phenotypic observations, the
model equation for individual i is:

I a b c 1 g h i
a 1 de g 1 g h

= C..=
Co=ly a1 ¢ h g1 og
¢c e f 1 i h g1

y=Xm+Z; b+Z,p+Z,a +e
where m = fm, m, ... m_J is the vector of fixed effects (overall
mean at each age), b = [b, b, ... b, [ is the vector of b x s ran-
dom block effects, p = [p, p, ... P,/ is the vector of p x s ran-
dom plot effects, a, = la,; a, ... a, ] is the vector of additive
genetic values, e, = [e;; e,, ... e, I'is the vector of random residu-
als, and X, Z.,., Z,. and Z,; are the incidence matrices for fixed,
block, plot and additive genetic effects respectively. If we think
of a non-inbred individual with all measurements (i.e. no miss-

ing observations) the dispersion matrices are:

Varlb] = B, Var[p] = P, Var[a,] = G, and Var[e,] = R,
with typical elements O Opi Caje e respectively. For individ-
uals with missing observations (and the vector y, reduced
accordingly) the corresponding rows and columns from R, are

omitted.
The multivariate model equation for the N individuals in the
progeny test is:
yv=Xm+Z,b+Z.,p+Z,a+e

wherey =1y, y,, ...y [, a=[a,a, ., a/lande=[e’ e, .. e/T.
In addition X = [X, X, ..., X/'I,
Z, = 2y, Zy), ..., 2,1, Z, = |Z;), Zy,), ..., Z)T and

Z,=3%,7., where ¥ denotes direct sum (SEARLE, 1982).

The expected value and dispersion matrices considering a
multivariate normal distribution and zero covariance between
random factors (blocks, plots and trees) are:

Elyl=Xm
Var(bl = B =% B, Varlpl =P =X P, Varla] = G = A @G,
and Varle] =R =X R,
thus Varlyl=Z,BZ;/+Z, PZ,;+Z . GZ/ + R
where A is the numerator relationship matrix (HENDERSON,
1984) and ® denotes direct product (SEARLE, 1982).

Best Linear Unbiased Prediction of the breeding values (a)
were calculated using HENDERSON’s mixed model equations
(HENDERSON, 1984) and assumed values of covariance com-
ponents. Values for all covariance components were obtained
by Restricted Maximum Likelihood (REML) using ASReml
(GILMOUR et al., 1998).

ArIoLAZA et al. (2000) analysed the dataset comparing five
models for describing the additive genetic covariance matrix
G,: unstructured (US), autoregressive with time in a natural
logarithm time scale (ARlog), banded correlations (BC),
random regressions (RR), and uncorrelated (UC). The UC
model is equivalent to independent univariate analyses and
does not provide direct estimates for genetic correlations
between ages (i.e. assuming zero between-trait genetic correla-
tions). The RR model did not converge; thus its estimates of
genetic parameters are not reliable. Therefore we calculated
response to selection from only three models: US, BC and
ARlog.

Expressing G, = 8 C S, where S is a diagonal matrix with
elements equal to the standard deviations for each assessment
and C the correlation matrix between assessments, these covar-

1 rllog(?/l )l rpog(}/l)[ r!log(m)t

r|1og(2/1)| 1 rjlog(3/2)| (Hlo(s12)

CARiDg = og3rn]  fog(3/2)] ! (loears)
rpogwl)l r|log(4ll)l r‘log(4/3)1 {

Figure 1. — Example of the unstructured (US), banded correlations (BC) and autoregressive with time on a
natural logarithm scale (ARlog) models. Correlations with the same letter represent the same value. The
BC model assumes similar correlations for measurements with equal time between expressions.
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iance models can be seen as using C with different sets of
restrictions (see Figure 1). In the US model C, 4 has no restric-
tions except for being positive definite. The BC model assumes
similar correlations for measurements with equal time between
expressions, creating bands of identical correlations in Cp.
The autoregressive model assumes that in C,p . the correla-
tion between two assessments at ages j and k has form
pllogk-log()l = pllogkDl Additive genetic and phenotypic covariance
parameters for these three models are presented in table 1
(adapted from ArioLAaZa et al., 2000).

ARlog was selected as the best model from a penalised-like-
lihood standpoint (i.e. the log-likelihood value Logl penalised,
in this case, according to the number p of independent parame-
ters of the model), using Akaike’s Information Criterion (AIC,
WaDA and KASHIWAGI, 1990):

AIC=-2LogL +2p

The best model using this criterion has the lowest value of
AIC. A detailed description of the models and model selection
criteria can be found in AP10LAZA and GARRICK (2001).

Predicted response to selection

Consider the breeding objective (H) or aggregate genotype as
a linear combination of n additive genetic valuesa=[a, a, ... a
weighted by their relative economic importance v =[v, v, ... v_|
where all elements of v are different from zero:
H=va
The selection index used to predict the aggregate genotype is:

I=cy*
where ¢ = [¢, ¢, ... ¢, ] is the vector of index weights, calculated
using economic and genetic information to maximise the corre-
lation between H and I, and y* = [y,* y,* ... y_ *I"is the vector
of phenotypic assessments on the trees adjusted for fixed
effects (i.e. y — X m for BLP or, in our case, y — X m for BLUP).
Index weights are calculated using (HazZEL, 1943):

c=P'Gv

where P and G represent the phenotypic and additive genet-
ic covariance matrices for the traits. These weights maximise
the accuracy of selection, i.e. the correlation between I and H
(ryg;) when the fixed effects, P and G are known.

Predicted response to selection (AG), considering one genera-
tion, is a function of accuracy of selection (r;), the variance of
the selection target (6,?) and the intensity of selection (i, relat-
ed to the proportion of trees selected):

AG=iry, oy

H can be partitioned in such a way that H=a, I, +a, L+ ... +a I,
where each index estimates the breeding value for a different
trait. VILLANUEVA et al. (1993) extended this concept partitio-
ning matrices P and G to facilitate generalisation of the esti-
mation process, where each submatrix corresponds to a trait.
The more general case, for m selection criteria (characters
and/or measurements with typical elements j and k) and n
traits in the aggregate genotype (with typical element q) is:

Table 1. -~ Genetic parameters for unstructured (US), banded correlations (BC) and autoregressive with
time on a naturat logarithm scale (ARlog) models. Additive genetic (5,%) and phenotypic variances (o, ?),
additive genetic covariances (o, o above diagonal) and phenotypic covariances (GV] , below diagonal).

i Vik

Age (years)
6

Age o’ o, 1 2 4 7 8 9 12 15
Us
1 0.001 0016 0,002 0007 0011 0016 0019 0019 0018 0018 0.024
2 0.004 0.051 0,022 0.016 0,023 0.029 0032 0033 0.026 0.020 0.027
4 0.070 0379 0.054 0.113 0.093 0.120 0132 0,36 0118 0105 0.139
5 0132 0752 0071 0.147 0473 0.169 0.194 0.193 0.178 Q.166 0.213
6 0.227 1105 0080 0,l67 0548 0,837 0.264 0.273 0266 0253 0.339
7 0315 1,306 0,083 0,170 0.563 0.863 1127 0330 0.333 0358 0463
8 0349 1,570 0.083 0.173 0579 0.887 1,170 1331 0.349 0394 0511
9 0367 2.014 0.089 0.183 Q616 0946 1270 1464 1,633 0444  0.581
12 0580 3402 0.102 0,199 0.678 1,065 1439 1678 1924 2241 0,764
15 0936 6968 0.130 0256 0.878 1.399 1.893 2224 2,597 3014 4.354
BC
1 0.001 0.016 0,002 0007 0008 0010 0.010 0010 0009 0.008 0.005
2 0.004 0.052 0.022 0018 0.023 0028 0,029 0028 0025 0020 0015
4 0.080 0,382 0.054 O0.114 0.105 0.130 0138 0.138 0Q.127 0,115 0.103
5 0.142  0.759 0071 0.148 0.478 0.175 0.190 0,193 Q178 0,160 0.135
6 0223 1112 0080 0,168 0553 0.844 0.241 0251 Q234 0214 0207
7 0.268 1311 0,082 0.171 0569 0.871 1134 0279 0.266 (0.256 0.249
8 0298 1572 0.083 0.174 0585 (.894 1.176 1,335 0.284 0.284 0273
9 0.278 2,008 008 0,185 0623 0954 1274 1464 1632 0.28%8 0281
12 0.337 3,368 0,101 0201 0.685 1073 1443 1673 1916 2,223 0.373
15 0468 6,900 0.129 0.256 0.877 1,393 1.880 2.197 2.564 2970 4.296
Arlog
1 0.002 0.016 0,002 0008 0012 0015 0018 0019 0019 0023 0.028
2 0.004 0.051 0.022 0.015 0.021 0.028 0032 0034 0.035 0041 0,050
4 0.064 0380 0055 0.l15 0.088 0.117 0,133 0,141 0148 0.174 0.211
5 0,126 0,754 0,072 0,149 0474 0,068 0.192 0203 0212 0250 0304
6 0.231 ~ 1.108 0.082 0Q.170 0.549 0.839 0.264 0.280 0.293 0.344 0419
7 0312 1309 0,034 0173 0565 0.865 1129 0331 0,345 0406 049
8 0.360 1.573 0.084 0,176 0.583 0891 1173 1333 0.376 0443 0.538
9 0402 2.016 009 Q187 0.622 0953 1.274 1465 1.636 0473 0575
12 0.590 3,399 0.105 0.208 0702 1.097 1476 L1709 1.954 2.269 0.718
15 0913 6959 0.134 0.266 0906 1435 1.933 2258 2.630 3.046 4.366
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P).k refers to the phenotypic covariance matrix between selec-
tion criteria j and k, and g, represents the vector of covari-
ances between the selection criteria j and breeding value for
trait q. Breeding values on H can be estimated with different
selection indices (selection criteria) representing different
selection schemes:

* Mass selection, considering only the own record of individual
i for trait j (yi].*), representing the simplest index:

Imassi = Clj y*ij
* Combined selection includes individual and family-average
information for trait j, whereby:

I comb;, = 13 Y ij* +Cy T
where: y* . is the phenotypic average (adjusted for fixed
effects) for the half-sib family, including the assessment on yij*,
on trait/measurement j, and c,; and c,; are index coefficients for
individual and family information respectively.

This notation is fairly general, allowing for any number of
selection criteria and traits in the breeding objective, and can
be readily extended to other types of relatives (see KERR, 1998,
for examples based on full-sib mating over a number of genera-
tions). Consider now an objective including a single breeding
value of the individual (e.g. height at 15 years) and m pheno-
typic assessments at earlier ages (e.g. height at age < 15
years). P and G for a given selection method contain m x m
submatrices and m subvectors respectively. The submatrices
and subvectors are:

* Mass selection (in this case P, and g, have dimension 1x1,
i.e. they are scalars):
P, = Cov(yiJ*, ¥y 5 = Oy
g, = Cov(yij * a,) = Cov(a. aiq) =0

ij? as
* Combined selection (individual — v — and average of half-

sib family — y*_j — with t individuals):

P - MCOV(y;,Y:k) COV()".*JW—Y_;)
Jk _Cov(?f}-, ¥a) Cov(Y;, )
g - [ Cov(y},ay)
1 LCOV(?.I’ al’q

where:
Cov(?*‘_i, v = Cov(y*ij, )= COV(y*.j, AE
(G + 0.25 (£ =1) 0 It

Covly* ,, a;) = %,

—_— Ga'
Cov(y""_i, a,) = ;
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and the phenotypic covariance is:
G, =0, +6_+0, +0
Yik T Pk TPk qk ek
Further generalisation to an objective with n traits would
involve m x n subvectors to define G.

Number and timing of measurements

We consider from one to three assessments only for progeny
tests, owing to economic and practical considerations, to
predict height performance at 15 years (then v = 1, a scalar).
Thus P contains between 1 x 1 and 3 x 3 submatrices, G
contains between 1 and 3 subvectors, and the breeding
objective considers only 1 trait. We generate all combinations
for 1, 2 and 3 measurements out of the 10 assessments used by
ArioLaza et al. (2000) and calculate predicted response to
selection for each combination. We do not interpolate inter-
mediate ages of assessments, but use only years actually
assessed. For all calculations we assume 200 families and 40
trees per family using forwards selection, i.e. selection of the
progeny rather than of the parents. The selection is 200 out of
8000, for an intensity i of 2.338 (FALCONER and MACKAY, 1996).

The best option is chosen based on response per unit of time,
i.e. response divided by generation interval, ignoring measure-
ment costs. Generation interval is calculated as selection delay
(age of the latest measurement) plus breeding delay (time be-
tween selection and propagation of sufficient offspring for
planting). Two levels for breeding delay are considered: 5 and 8
years.

Results and Discussion

AprioLaZA et al. (2000) determined that, based upon AIC
value, the ARlog model was the best for the data set analysed.
Nevertheless, they also pointed out that small differences in
statistical model selection criterion could conceal large differ-
ences in genetic parameters. Given that the dataset available
comprises only one generation, it is not possible to compare the
covariance structures in terms of empirical gain, but only in
terms of predicted response to selection based upon estimates
of genetic parameters. Consequently, at each time one of the
models was assumed as the ‘true’ one and response to selection
calculated accordingly. Because of this, results are not directly
comparable across covariance models.

The pattern of predicted response to selection, considering
any number of measurements, vary widely among covariance
structures. Both US and ARlog models achieve similar maxi-
mum gain per year, but with three years of difference in timing
(4 vs 7 years, Figure 2). The ARlog model consistently achieves
higher gains when selecting under age 9 years. Predicted
response for the ARlog model tends to be dominated by the
high level of autocorrelation, while in the US model seems to
follow the trend for heritability of height. The predicted response
to selection of the US model based on early measurements
seems to fluctuate more erratically. ArioLAZA et al. (2000),
suggest the use of a much larger experiment to obtain more
reliable estimates of the genetic correlations. Predicted response
from the BC model is far lower than with the other two models
but follows a trend similar to the ARlog model. In the former
model heritability and genetic correlation estimates are most of
the time smaller than in the ARlog and US models.

The trends of the effects of additional measurements and
extra information from relatives were similar for all covariance
models. We will use the ARlog model for illustration purposes.
The effect of integrating information from relatives in the
genetic evaluation is far greater than that of including extra
measurements when predicting the breeding values (see Figure 3),
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Figure 2. — Predicted response per year to forward mass selection for
different covariance structures: unstructured (US, —o—), banded corre-
lations (BC, ---*---) and autoregressive with time on a natural logarithm
scale (ARlog, ---A---) considering 5 years breeding delay.

with little or no extra cost (except those related to the use of
more sophisticated analyses). Results for multiple assessments
presented in figure 3 correspond to the best combination of two
ages lower or equal to the age reported (Tuble 2). From age 1 to
8 years using an extra measurement increases predicted
response between 2% and 5%, and only from age 9 onwards
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Figure 3. — Predicted response per year to forward selection for the
autoregressive model with time on a natural logarithm scale (ARlog)
considering: single assessment-mass selection (—o—), two assessments-
mass selection (- #--+) and single assessment-combined sclection (---A---)
for 5 years of breeding delay. Response considering single assessment-
combined selection for 8 years of breeding delay (---+---).

Table 2. — Predicted response to selection and best combinations of
assessments for the autoregressive model with time on a natural
logarithm scale (ARlog), for mass selction with 1 and 2 measurements.

Age of selection Mass selection, Mass selection,
(years) 1 measurement 2 mcasurements
Response per Response per Combination of
year (m) year (m) measurements (ages)
1 0.086
2 0,074 0.078 {12
4 0.089 0.092 [2 4]
5 0.082 0.083 [@5]
6 0.085 0.086 [26]
7 0,084 0.086 27]
8 0.077 0.079 78]
9 0.068 0.072 [79]
12 0.054 0.060 [712]
15 0.040 0.051 {7 15]

predicted response increases from 7% at 9 years to 25% at
15 years (Figure 3). A similar trend is observed for combined
selection with 2 measurements (results not presented). In spite
of this, the optimum selection time does not change from age 4
years, when the additional predicted response is 4%. The
results from including a third measurement are not presented,
because the gain is marginal.

The use of family information increased predicted response
to forwards selection by 16% to 41%, especially at early ages.
Additionally, the optimum selection times reduces from 4 years
to 1 year. The reduction of selection age also applies to the US
model, where optimum selection is at one year. Selection time
is not affected in the BC model.

The only case when combined selection is inferior to mass
selection using two assessments (at ages 7 and 15) is for
predicted response selecting at age 15. This is caused by the
low accuracy at age 15 (low heritability) compared to an index
that integrates information from that year with information
from age 7 (the age of the highest heritability).

When considering selection at very early ages (e.g. 1 year) a
breeding delay of 5 years could be far too optimistic, given
current biological constraints. Breeding delay includes the time
needed for flowering, the delay between flowering and seed
production, and time for multiplication. While the last two are
independent from selection age, the first one is probably inter-
dependent with age during the first 5 years. Therefore, the use
of a uniform breeding delay for all selection ages should be con-
sidered as a simplifying assumption. If the first component of
breeding delay is addressed with more detail selection ages
would tend to be pushed forward. As expected, the effect of
increasing breeding delay (from 5 to 8) is larger for early selec-
tion ages than for late selections (Figure 3). The reduction of
predicted per-year response resulting from the increased breed-
ing delay, using single-assessment combined selection, ranges
from 33% at age 1 to 13% at age 15 (Figure 3). This trend of
reductions is close to linear (R%=0.95) and very similar for all
covariance structures.

Final Considerations

Although including more assessments increases predicted
response to selection, especially after age 8, the extra response
does not match the gain attained using a single assessment
with combined selection. Nevertheless, it is expected that using
multiple assessments could be advisable for datasets with
lower genetic autocorrelations or strong age-age environmental
correlations. A decision on single versus multiple measure-
ments for selection should take into account the gain in response
(weighted by the number of hectares deployed with material
from the breeding program) versus the costs of extra measure-
ments. Three further considerations are: that several measure-
ments might reduce optimal generation interval (increasing
accuracy at a given age and ascertaining the stability of rank-
ings, making earlier selection more appealing), that selection
for seed orchards can be continually updated and could make
use of additional measurements (e.g. last three combinations of
Table 2), and that measuring costs often increase with age (e.g.
NEwMAN and WILLIAMS, 1991).

We anticipate that reducing breeding delay (through overcom-
ing biological constraints upon age of flowering) would drive
optimum selection to earlier ages, because the denominator of
response per unit of time would be dominated by selection age.
Reducing the generation interval from 9 years (i.e. selection at
4 years) to 6 years (i.e. selecting at 1 year) most probably will
affect profit when considering net discounted value.
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It seems that it is still possible in tree breeding to obtain
additional gains through the use of more sophisticated methods
of genetic evaluation, without resorting to extra assessments.
Dealing with more than one generation and/or more complex
crossing designs (e.g. controlled pollination) will imply using
selection criteria including the estimated breeding values of
the parents. However if selection operates through several
generations other factors must be considered: gametic linkage
phase disequilibrium (BULMER effect), genetic drift, mutational
variance and effective population size (WEI et al., 1996). An
extra advantage of considering data over several generations is
the opportunity to determine the best covariance model on
terms of realised response to selection, rather than on predict-
ed values.

An important aspect, but beyond the scope of this paper, is
the consideration of the risk involved in early selection. Devia-
tions from predicted gain (either overestimation or underesti-
mation) can potentially alter both the selection age(s) and the
economic results of a breeding program; and the variance of the
response should be taken into account. Risk may arise, among
other reasons, because of low accuracy of prediction, traits not
being expressed at selection age (e.g. effect of Cyclaneusma
needle cast, ¢f. BURDON, 1989), differences between perform-
ance at final assessment (15 years) and at rotation age
(20 years), and the effect of faster reduction of effective popula-
tion size due to more frequent generation turnover. Several
approaches to deal with risk have been proposed in tree and
animal breeding literature including simulation of predicted
gain using stochastic sampling of genetic correlations (e.g.
NEwWMAN and WILLIAMS, 1991; MAGNUSSEN and YANCHUK, 1993),
quadratic programming (SCHNEEBERGER et al., 1982) and
Bayesian decision theory (e.g. WooLLIAMS and MEUWISSEN,
1993). A comprehensive risk analysis will probably need to
consider the effects of early selection on variance of predicted
response across several generations.

It is appropriate to emphasise that the results presented in
this research relate to a small number of families growing in
one site. Therefore they should not be considered as the
‘standard’ results for radiata pine. It will be necessary to
extend the analyses of longitudinal data to datasets including
multiple sites and more families, to be sure of the reliability of
estimates of genetic parameters. Accordingly, this study pro-
vides an illustration of methodology rather than definitive
guidelines for early selection.
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